Current Progress of Anode‐Free Rechargeable Sodium Metal Batteries: Origin, Challenges, Strategies, and Perspectives

Author:

Hu Zewei1ORCID,Liu Liyang1,Wang Xin1,Zheng Qingqing1,Han Chao2,Li Weijie1ORCID

Affiliation:

1. State Key Laboratory for Powder Metallurgy Central South University Changsha 410083 China

2. School of Materials Sciences and Engineering Central South University Changsha 410083 China

Abstract

AbstractAnode‐free sodium metal batteries (AFSMBs) as one new battery configuration, have attracted more attention in recent years and considered as the promising next‐generation energy storage systems, owing to the advantages of high theoretical energy density, high safety, cost‐saving, and simplified fabrication process. The practical application of AFSMBs, however, is impeded by their poor cycle life arising from the low coulombic efficiency (CE), the growth of metal dendrite, and unstable solid electrolyte interphase (SEI). Recently, some works are reported to dissolve the above‐mentioned issues. In this review, it provides a comprehensive summary of AFSMBs including their origin, mechanism, advantages, challenges, strategies, and perspectives. First, the intrinsic issues of conventional sodium metal batteries are summarized as safety concerns and manufacturing difficulty, which is the background of promoting AFSMBs’ birth. Subsequently, the mechanism, construction requirement, advantages, and challenges of AFSMBs are discussed. Furthermore, the strategies for improving AFSMBs performance in terms of the current collector, electrolyte, and protocols, are summarized based on an extensive literature survey. Finally, the summary and outlook on this emerging field are further discussed briefly.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3