Triboelectricity Based Self‐Powered Digital Displacement Sensor for Aircraft Flight Actuation

Author:

Zhou Zhuyu12,Xu Zijie23,Cao Leo N.Y.23,Sheng Hengrui24,Li Chengyu2,Shang Yurui24,Tang Wei24,Wang Zhong Lin235

Affiliation:

1. College of Engineering Zhejiang Normal University Zhejiang 321000 China

2. CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 China

3. School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China

4. Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China

5. School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332‐0245 USA

Abstract

AbstractThe utilization of unmanned aerial vehicles (UAVs) is on the rise across various industries. In such a scenario, the issue of flight safety for these UAVs becomes increasingly paramount. Currently, UAVs exhibit shortcomings in flight attitude perception compared to more mature manned aircraft, especially concerning the position sensing of flight actuation, which poses significant safety risks. Mature position monitoring solutions for flight actuation used in manned aircraft cannot be directly integrated into systems of UAV due to compatibility issues. This necessitates the development of new position sensing technologies to address this challenge. Triboelectric nanogenerators, with their advantages of miniaturization, self‐powering capabilities, and the ability to generate voltage‐level electrical signals, are chosen to form a part of the position detection system for sensors in UAVs. In this study, a self‐powered displacement sensor is developed that utilizes frictional charge separation signals. This sensor is specifically designed to monitor the position status of the flight actuators in UAV. With a compact volume of <11.1 cm3 and a weight of <9.5 g, this sensor is lightweight efficient and adaptable for practical applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3