N‐Containing Carbons Derived from Microporous Coordination Polymers for Use in Post‐Combustion Flue Gas Capture

Author:

Karve Vikram Vinayak1,Espín Jordi1ORCID,Asgari Mehrdad2,Van Gele Samuel1,Oveisi Emad3,Queen Wendy Lee1ORCID

Affiliation:

1. Institute of Chemical Sciences and Engineering (ISIC) École Polytechnique Fédérale de Lausanne (EPFL) Sion CH‐1951 Valais Switzerland

2. Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge CB3 0AS UK

3. Interdisciplinary Center for Electron Microscopy École Polytechnique Fédérale de Lausanne (EPFL) CH‐1015 Lausanne Switzerland

Abstract

AbstractHerein, novel carbons that, owing to a high density of micropores (up to 79%) and N‐content (up to 14.9%), offering exciting potential for post‐combustion CO2 capture are reported. Given that little is known about how starting materials impact the structure and performance of carbons, three different microporous materials are pyrolyzed. These include a Co‐(metal‐organic framework) (MOF), a Co‐MOF‐polymer composite, and a coordination polymer derived from the same monomer and cobalt ions. Notably, the cobalt, which is required to drive the polymerization, is subsequently leached from the carbons via acid for its reuse in MOF synthesis. Next, various metrics including CO2 capacity, selectivity, isosteric heat of adsorption, breakthrough time and cyclability are assessed. The acid treated carbons adsorb 0.21, 0.99, and 1.11 mmol CO2 g−1, respectively, (313 K, 0.15 bar) with CO2/N2 selectivity ranging from 37 to 52. Due to superior capacity, the polymer‐derived carbons also reveal impressive breakthrough times in simulated flue gas mixtures (15% CO2/85% N2, 80% RH, 313 K) ranging from 33 to 40 min g−1. Similar performance is also observed under dry conditions and after pre‐saturation with water for 1.5 h. Remarkably, no loss in working capacity is observed after 100 CO2 TSA cycles (313 K/393 K).

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3