High‐Performance 2.2 V Asymmetric Supercapacitors Achieved by Appropriate Charge Matching between Ultrahigh Mass‐Loading Mn3O4 and Sodium‐Jarosite Derived FeOOH

Author:

Xu Pengfei1,Luo Shuang2,Liang Jianying1,Pan Die1,Zou Bingsuo1,Li Jien1ORCID

Affiliation:

1. State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite Structures MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources Environment and Materials Guangxi University Nanning 530004 P. R. China

2. Department of Materials Science & Engineering City University of Hong Kong Hong Kong 999077 P. R. China

Abstract

AbstractFor the advancement of high‐energy asymmetric supercapacitors, the breakthrough point is matching charge storage capacity and balanced electrode kinetics between the positive and negative electrodes. Herein, Mn3O4 nanosheets composed of nanoparticles are anchored on activated carbon cloth (ACC) as the positive electrode by electrodeposition. FeOOH nanoparticles derived from NaFe3(SO4)2(OH)6 truncated cubes serve as the negative electrode. Due to the unique sheet‐like network structure, ultrahigh mass‐loading (73.3 mg cm−2), and enhanced kinetics, the Mn3O4@ACC electrode exhibits an ultrahigh specific capacitance of 12.77 F cm−2. Besides, the FeOOH@ACC electrode with a low‐crystalline structure also exhibits a maximum specific capacitance of 17.84 F cm−2. The Na+ diffusion process, the charge storage mechanism, and the electrochemical reaction kinetics of the Mn3O4@ACC are investigated by ex situ characterization. Theoretical calculations show that Mn3O4 has metallic electronic conductivity and reveal the adsorption and diffusion mechanism of Na ions during the electrode process. The assembled aqueous Mn3O4//FeOOH asymmetric supercapacitor  device successfully extends the operating voltage to 2.2 V and exhibits a high energy density of 3.75 mWh cm−2 and ultra‐long cycle life (81.6% capacity retention after 26,000 cycles). Therefore, this study provides a feasible pathway for the further development of asymmetric supercapacitors with high energy density.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3