Crystalline Magnetic Anisotropy in High Entropy (Fe, Co, Ni, Cr, Mn)3O4 Oxide Driven by Single‐Element Orbital Anisotropy

Author:

Ke Wei‐En1,Chen Jia‐Wei1,Liu Cheng‐En2,Ku Yu‐Chieh2,Chang Chun‐Fu3,Shafer Padraic4,Lin Shi‐Jie5,Chu Ming‐Wen5,Chen Yi‐Cheng6,Yeh Jien‐Wei6,Kuo Chang‐Yang27ORCID,Chu Ying‐Hao16ORCID

Affiliation:

1. Department of Materials Science and Engineering National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan

2. Department of Electrophysics National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan

3. Max Planck Institute for Chemical Physics of Solids 01187 Dresden Germany

4. Lawrence Berkeley National Laboratory Advanced Light Source Berkeley CA 94720 USA

5. Center for Condensed Matter Sciences National Taiwan University Taipei 10617 Taiwan

6. Department of Materials Science and Engineering National Tsing Hua University Hsinchu 30013 Taiwan

7. National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan

Abstract

AbstractThe design of multicomponent materials has captured considerable attention due to its extraordinary ability to tailor functional properties. However, how a single element affects the behavior of the overall material has yet to be explored in depth. In this study, the heteroepitaxy of high entropy (Fe, Co, Ni, Cr, Mn)3O4 films with varying strain states are investigated in magnetic performance. It is discovered that the high entropy oxide thin film with compressive strain exhibits an effect of crystalline magnetic anisotropy. Diverse analyses provide a detailed understanding of high entropy magnetic oxide systems, including X‐ray diffraction, reciprocal space mapping, macroscopic magnetic characterization, X‐ray absorption spectroscopy (XAS), etc. Notably, the element‐specific XAS technique proves effective in uncovering the origin of the crystalline magnetic anisotropy. Due to the substrate‐induced epitaxial strain, the eg orbitals of Mn3+ form different energy levels, leading to different preferred electron occupancy. The exploration of magnetic properties in epitaxial high entropy oxide film is then raveled. By navigating the complexities introduced by the random atom distribution and intricate magnetic interactions, this study pioneers novel methodologies for probing the core physics of high entropy oxides.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3