Protein‐Based Controllable Nanoarchitectonics for Desired Applications

Author:

Li Ling123,Zhang Yingying123,Wu Yage123,Wang Zhengge123,Cui Wandi123,Zhang Chunhong4,Wang Jinglin123,Liu Yongchun123,Yang Peng123ORCID

Affiliation:

1. Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China

2. Xi'an Key Laboratory of Polymeric Soft Matter School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China

3. International Joint Research Center on Functional Fiber and Soft Smart Textile School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China

4. Xi'an Key Laboratory of Advanced Control and Intelligent Process School of Automation Xi'an University of Posts & Telecommunications Xi'an 710121 China

Abstract

AbstractControllable protein nanoarchitectonics refers to the process of manipulating and controlling the assembly of proteins at the nanoscale to achieve domain‐limited and accurate spatial arrangement. In nature, many proteins undergo precise self‐assembly with other structural domains to engage in synergistic physiological activities. Protein nanomaterials prepared through protein nanosizing have received considerable attention due to their excellent biocompatibility, low toxicity, modifiability, and versatility. This review focuses on the fundamental strategies used for controllable protein nanoarchitectinics, which include computational design, self‐assembly induction, template introduction, complexation induction, chemical modification, and in vivo assembly. Precise controlling of the nanosizing process has enabled the creation of protein nanostructures with different dimensions, including 0D spherical oligomers, 1D nanowires, nanorings, and nanotubes, as well as 2D nanofilms, and 3D protein nanocages. The unique biological properties of proteins hold promise for diverse applications of these protein nanomaterials, including in biomedicine, the food industry, agriculture, biosensing, environmental protection, biocatalysis, and artificial light harvesting. Protein nanosizing is a powerful tool for developing biomaterials with advanced structures and functions.

Funder

National Science Fund for Distinguished Young Scholars

National Key Research and Development Program of China

Higher Education Discipline Innovation Project

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3