Gelatin‐Derived Hard Carbon Achieves Effective Control of Microstructure toward Fast and Durable Sodium Storage

Author:

Wei Yunhong1,Ji Xiaohao2,Lu Zhiyu3,Jin Hongchang3,Kong Xianghua2,Jin Song3,Ji Hengxing13ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China

2. School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 P. R. China

3. Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Applied Chemistry University of Science and Technology of China Hefei 230026 P. R. China

Abstract

AbstractHard carbon (HC) is the most promising anode material for commercial sodium‐ion batteries (SIBs). However, the complex composition of biomass‐derived HC precursors often requires great efforts to impart controlled structures and desired performance. Effective control of the microstructure is still highly desirable for HC anodes. Herein, gelatin is employed as a precursor to regulating the HC structure, including defect concentration, average interlayer spacing, and the pore structure. This provides insights into systematic improvement strategies of sodium‐ion transfer kinetics toward fast and durable sodium storage. Gelatin, as a bio‐precursor, contains abundant ─COOH and ─NH2 groups that promote metal cross‐linking and facilitate the control of the structural evolution of HC. By reasonably controlling the defect content and pore structure, the electrochemical performance can be tailored with enhanced kinetics of sodium‐ion storage. The optimized HC shows a high reversible capacity of 400 mAh g−1, outstanding rate performance, and structural stability over 10 000 cycles with a capacity retention of 77.8%. This work leads to the development of high‐performance HC materials from biomass, which is essential for advancements in battery technology.

Funder

National Natural Science Foundation of China

CAS Center for Excellence in Particle Physics

Science Fund for Distinguished Young Scholars of Anhui Province

National Basic Research Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3