Atomically Confined Ru Sites in Octahedral Co3O4 for High‐Efficiency Hydrazine Oxidation

Author:

Zhai Yanjie1ORCID,Jin Chengkai2,Xia Qing1,Han Wenkai1,Wu Jie1,Zhao Xunhua2,Zhang Xiao1ORCID

Affiliation:

1. Department of Mechanical Engineering Research Institute for Advanced Manufacturing The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR 999077 China

2. Laboratory of Quantum Materials and Devices of Ministry of Education School of Physics Southeast University Nanjing 211189 China

Abstract

AbstractHydrazine‐assisted water electrolyzer is a promising energy‐efficient alternative to conventional water electrolyzer, offering an appealing path for sustainable hydrogen (H2) production with reduced energy consumption. However, such electrolyzer is presently impeded by lacking an efficient catalyst to accelerate the kinetics of pivotal half‐reaction, that is, hydrazine oxidation reaction (HzOR). Herein, a ruthenium (Ru) single‐atom on an octahedral cobalt oxide (Co3O4) substrate (Ru‐Co3O4) catalyst, guided by theoretical calculations is developed. Those lattice‐confined Ru sites within octahedral structure of spinel Co3O4 effectively lower the energy barrier required for the formation of N2H2* intermediate and desorption of H* species in HzOR. As a result, the Ru‐Co3O4 catalyst achieves superior HzOR performance with a low potential of −0.024 V versus (vs.)reversible hydrogen electrode (RHE) at 100 mA cm−2 and remarkable stability for over 200 h at 200 mA cm−2. Importantly, a modular H2 production achieves an output of 0.48 kWh electricity per m3 H2 by decoupling and pairing the HzOR and hydrogen evolution reaction (HER) half‐reaction with a Zinc (Zn) redox reservoir. The work represents a significant advancement in the field, offering substantial flexibility for on‐demand H2 production and energy output.

Funder

Hong Kong Polytechnic University

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3