Affiliation:
1. Institutes of Physical Science and Information Technology Leibniz Joint Research Center of Materials Sciences Engineering Laboratory of High‐Performance Waterborne Polymer Materials of Anhui Province Anhui Graphene Engineering Laboratory Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education) Anhui University Hefei 230601 China
2. School of Chemical Engineering & Advanced Materials The University of Adelaide Adelaide 5005 Australia
3. Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province College of Pharmacy Qinghai Nationalities University Xining 810007 P. R. China
4. Institute for Solid State Physics Laboratory of Nano and Quantum Engineering (LNQE) Leibniz University Hannover Appelstrasse 2 30167 Hannover Germany
Abstract
AbstractAqueous zinc ion batteries (AZIBs) with high safety, low cost, and eco‐friendliness advantages show great potential in large‐scale energy storage systems. However, their practical application is hindered by low Columbic efficiency and unstable zinc anode resulting from the side reactions and deterioration of zinc dendrites. Herein, tripropylene glycol (TG) is chosen as a dual‐functional organic electrolyte additive to improve the reversibility of AZIBs significantly. Importantly, ab initio molecular dynamics theoretical simulations and experiments such as in situ electrochemical impedance spectroscopy, and synchrotron radiation‐based in situ Fourier transform infrared spectroscopy confirm that TG participates in the solvation sheath of Zn2+, regulating overpotential and inhibiting side reactions; meanwhile, TG inhibits the deterioration of dendrites and modifies the direction of zinc deposition by constructing an adsorbed layer on the zinc anode. Consequently, a Zn‐MnO2 full cell with TG electrolyte exhibited a specific capacity of 124.48 mAh g‐1 after 1000 cycles at a current density of 4 A g‐1. This quantitative regulation for suitable solvation sheath and adsorbed layer on zinc anode, and its easy scalability of the process can be of immediate benefit for the dendrite‐free, high‐performance, and low‐cost energy storage systems.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Anhui Province
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
159 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献