Measurement Geometry and Hydrostatic Pressure‐Dependent Magnetoresistance in All‐Oxide‐Based Synthetic Antiferromagnets

Author:

Jin Feng1ORCID,Shao Jifeng23,Zhang Zixun1,Zhang Wujun4,Liu Kai1,Li Jingyuan2,Liu Kuan1,Dai Kunjie1,Wang Qing1,Lv Qiming1,Hua Enda1,Chen Pingfan5,Huang Zhen5,Ma Chao4,Wang Lingfei1,Zhao Yue26,Wu Wenbin1578

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China

2. Shenzhen Institute for Quantum Science and Engineering Southern University of Science and Technology Shenzhen 518055 China

3. International Quantum Academy Shenzhen 518048 China

4. College of Materials Science and Engineering Hunan University Changsha 410082 China

5. Institutes of Physical Science and Information Technology Anhui University Hefei 230601 China

6. Department of Physics Southern University of Science and Technology Shenzhen 518055 China

7. High Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230031 China

8. Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China

Abstract

AbstractThe electronic structure of constituent layers and the spin channel of propagating electrons are critical factors that affect the magnitude and sign of magnetoresistance (MR) in synthetic antiferromagnets (SAFMs), which are important for spintronic applications. However, for all‐oxide‐based SAFMs, where there is strong coupling between multiple degrees of freedom, spin transport becomes more complex and remains elusive. Here, using ultrathin half‐metallic manganite/doped ruthenate SAFMs as a model system, three sign reversals of MR are demonstrated accompanied by the crossover between underlying spin‐dependent transport mechanisms. Electron tunneling produces normal MR in the current‐perpendicular‐to‐plane (CPP) geometry at low temperatures, whereas carrier confinement causes inverse MR in the current‐in‐plane (CIP) geometry. Strikingly, CPP MR can undergo a temperature‐driven sign reversal due to resonant tunneling via localized states in the spacer. Moreover, hydrostatic pressure can modulate the interlayer exchange coupling and induce an asymmetric interfacial response to dramatically facilitate electron tunneling, driving a controllable sign reversal of CIP MR. These results provide new insights into understanding and optimization of MR in all‐oxide‐based SAFMs.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3