Versatile Hypoxic Extracellular Vesicles Laden in an Injectable and Bioactive Hydrogel for Accelerated Bone Regeneration

Author:

Deng Jiajia1,Wang Xin2,Zhang Weihua1,Sun Liangyan1,Han Xinxin3,Tong Xianqin1,Yu Liming1,Ding Jiandong2,Yu Lin2ORCID,Liu Yuehua1

Affiliation:

1. Department of Orthodontics Shanghai Stomatological Hospital and School of Stomatology Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Fudan University Shanghai 200001 P. R. China

2. State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China

3. Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Fudan University Shanghai 200001 P. R. China

Abstract

AbstractExtracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have emerged as an appealing alternative to cell therapy in regenerative medicine. Unlike bone marrow MSCs (BMSCs) cultured in vitro with normoxia, bone marrow in vivo is exposed to a hypoxic environment. To date, it remains unclear whether hypoxia preconditioning can improve the function of BMSC‐derived EVs and be more conducive to bone repair. Herein, it is found that hypoxia preconditioned BMSCs secrete more biglycan (Bgn)‐rich EVs via proteomics analysis, and these hypoxic EVs (Hypo‐EVs) significantly promote osteoblast proliferation, migration, differentiation, and mineralization by activating the phosphatidylinositide 3‐kinase/protein kinase B pathway. Subsequently, an injectable bioactive hydrogel composed of poly(ethylene glycol)/polypeptide copolymers is developed to improve the stability and retention of Hypo‐EVs in vivo. The Hypo‐EVs‐laden hydrogel shows continuous liberation of Hypo‐EVs for 3 weeks and substantially accelerates bone regeneration in 5‐mm rat cranial defects. Finally, it is confirmed that Bgn in EVs is a pivotal protein regulating osteoblast differentiation and mineralization and exerts its effects through paracrine mechanisms. Therefore, this study shows that hypoxia stimulation is an effective approach to optimize the therapeutic effects of BMSC‐derived EVs and that injectable hydrogel‐based EVs delivery is a promising strategy for tissue regeneration.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3