Phase‐Separated Polyzwitterionic Hydrogels with Tunable Sponge‐Like Structures for Stable Solar Steam Generation

Author:

Peng Bolun1,Lyu Quanqian1,Li Miaomiao1,Du Shuo1,Zhu Jintao1,Zhang Lianbin1ORCID

Affiliation:

1. State Key Laboratory of Material Processing and Die & Mould Technology Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) Wuhan 430074 China

Abstract

AbstractSolar steam generation (SSG) through hydrogel‐based evaporators has shown great promise for freshwater production. However, developing hydrogel‐based evaporators with stable SSG performance in high‐salinity brines remains challenging. Herein, phase‐separated polyzwitterionic hydrogel‐based evaporators are presented with sponge‐like structures comprising interconnected pores for stable SSG performance, which are fabricated by photopolymerization of sulfobetaine methacrylate (SBMA) in water‐dimethyl sulfoxide (DMSO) mixed solvents. It is shown that driven by competitive adsorption, the structures of the resulting poly(sulfobetaine methacrylate) (PSBMA) hydrogels can be readily tuned by the volume ratio of DMSO to achieve phase separation. The optimized phase‐separated PSBMA hydrogels, combining the unique anti‐polyelectrolyte effects of polyzwitterionic hydrogels, demonstrate a rapid water transport capability in brines. After introducing photothermal polypyrrole particles on the surface of the phase‐separated PSBMA hydrogel evaporators, a stable water evaporation rate of ≈2.024 kg m−2 h−1 and high solar‐to‐vapor efficiency of ≈97.5% in a 3.5 wt.% brine are obtained under simulated solar light irradiation (1.0 kW m−2). Surprisingly, the evaporation rates remain stable even under high‐intensity solar irradiation (2.0 kW m−2). It is anticipated that the polyzwitterionic hydrogel evaporators with sponge‐like porous structures will contribute to developing SSG technology for high‐salinity seawater applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3