Carrier Transport Enhancement Mechanism in Highly Efficient Antimony Selenide Thin‐Film Solar Cell

Author:

Luo Yandi12,Chen Guojie1,Chen Shuo1,Ahmad Nafees1,Azam Muhammad3,Zheng Zhuanghao1,Su Zhenghua1,Cathelinaud Michel2,Ma Hongli2,Chen Zhigang4,Fan Ping1,Zhang Xianghua2,Liang Guangxing1ORCID

Affiliation:

1. Shenzhen Key Laboratory of Advanced Thin Films and Applications Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen Guangdong 518060 P. R. China

2. CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 Univ Rennes F‐35000 Rennes France

3. Department of Physics Faculty of Sciences University of Central Punjab Lahore 54000 Pakistan

4. School of Chemistry and Physics Queensland University of Technology Brisbane Queensland 4001 Australia

Abstract

AbstractExhibiting outstanding optoelectronic properties, antimony selenide (Sb2Se3) has attracted considerable interest and has been developed as a light absorber layer for thin‐film solar cells over the decade. However, current state‐of‐the‐art Sb2Se3 devices suffer from unsatisfactory “cliff‐like” band alignment and severe interface recombination loss, which deteriorates device performance. In this study, the heterojunction interface of an Sb2Se3 solar cell is improved by introducing effective aluminum (Al3+) cation into the CdS buffer layer. Then, the energy band alignment of Sb2Se3/CdS:Al heterojunction is modified from a “cliff‐like” structure to a “spike‐like” structure. Finally, heterojunction interface engineering suppresses recombination losses and strengthens carrier transport, resulting in a high efficiency of 8.41% for the substrate‐structured Sb2Se3 solar cell. This study proposes a facile strategy for interfacial treatment and elucidates the related carrier transport enhancement mechanism, paving a bright avenue to overcome the efficiency bottleneck of Sb2Se3 thin‐film solar cells.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3