Bi‐Directional Electrolytic Reduction of CO2 to Mesoporous Carbons with Regulated Structure and Surface Functional Groups for Zn‐ion Capacitors

Author:

Yu Ao12,Zhao Yinan1,Zhang Wei23,Yang Wenhao1,Zhu Longtao1,Peng Ping1,Li Fang‐Fang1,Yang Yang23456ORCID

Affiliation:

1. State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 P. R. China

2. NanoScience Technology Center University of Central Florida Orlando FL 32826 USA

3. Department of Materials Science and Engineering University of Central Florida Orlando FL 32826 USA

4. Renewable Energy and Chemical Transformation Cluster University of Central Florida Orlando FL 32826 USA

5. Department of Chemistry University of Central Florida Orlando FL 32826 USA

6. The Stephen W. Hawking Center for Microgravity Research and Education University of Central Florida Orlando FL 32826 USA

Abstract

AbstractZn‐ion capacitors (ZICs) take advantage of batteries and supercapacitors in delivering high energy and power densities for energy storage by using porous carbons due to their low cost, lightweight, high conductivity, and good stability. However, it remains a grand challenge to regulate the mesoporous structures of carbons, including pore sizes and surface functional groups, which are essential for ion transport and electrochemical reactions of ZICs. Herein, a bi‐directional electrolysis strategy is developed to directly reduce CO2 to oxygen‐rich mesoporous carbons (OMCs) with adjustable pore sizes and oxygen‐bearing functional groups, which are preferred for ZICs as theoretically proved by density functional theory (DFT). The designed OMCs exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. When assembled in the flexible ZICs, the OMCs demonstrate a high capacitance of 329.5 mAh g−1. This work presents a novel strategy for synthesizing OMCs through a decarbonization process and reveals the crucial role of microstructure and surface functional groups in promoting the performance of ZICs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3