Cellulose Metamaterials with Hetero‐Profiled Topology via Structure Rearrangement During Ball Milling for Daytime Radiative Cooling

Author:

Cai Chenyang1ORCID,Wu Xiaodan1,Cheng Fulin1,Ding Chunxiang1,Wei Zechang2,Wang Xuan3,Fu Yu1

Affiliation:

1. Co‐Innovation Center of Efficient Processing and Utilization of Forest Resource School of Materials Science and Engineering Nanjing Forestry University Nanjing Jiangsu 210037 China

2. College of Chemistry and Materials Engineering Zhejiang A&F University Hangzhou 311300 China

3. Department of Mechanical Engineering University of North Texas Denton TX 76203 USA

Abstract

AbstractPassive radiative cooling is a zero‐energy consumption approach, which can dissipate heat to outer space by emitting infrared radiation through the transparency window. Traditional cooling materials, such as photonic films, metafabrics, and polymer foams, still suffer from complex preparation processes and high costs. In this work, it is reported that natural cellulose can be converted into a “green” optical metamaterial by rational structure reconfiguration at the micro/nano level via scalable ball milling technology for efficient daytime radiative cooling. Specifically, fine‐tuning the shearing kinetics in the mechanochemistry process, cellulosic optical metamaterial (COM) with ≈98% solar reflectivity and ≈0.97 infrared emissivity has been successfully achieved, which can break through the theoretical value of photonic crystals as well as the conventional synthetic optical materials. The COMSOL simulation reveals that the excellent optical properties of the cellulose metamaterial are explained by the “confined scattering” effect caused by the rearranged heterostructure at the micro/nano level. Outdoor tests demonstrat that the COM‐based coating exhibits a daytime radiative cooling efficiency of 5.7 °C in hot Nanjing. Meanwhile, the COM can be produced into different scattering materials via spray coating, freeze casting, and solution casting technology. This study will facilitate the development of scalable and sustainable optical metamaterials for mitigating energy consumption.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3