High‐Efficiency All‐Small‐Molecule Organic Solar Cells Based on New Molecule Donors with Conjugated Symmetric/Asymmetric Hybrid Cyclopentyl‐Hexyl Side Chains

Author:

Wang Xunchang12,Li Zhiya1,Zheng Xufan1,Xiao Cong1,Hu Tianyu1,Liao Yuchen1,Yang Renqiang1ORCID

Affiliation:

1. Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education) School of Optoelectronic Materials & Technology Jianghan University Wuhan 430056 China

2. State Key Laboratory of Fine Blasting Jianghan University Wuhan 430056 China

Abstract

AbstractAll small molecule organic solar cells (ASM‐OSCs) have numerous advantages but lower power conversion efficiencies (PCEs) than their polymer equivalents, which is largely due to the suboptimal nanoscale network structure in a bulk heterojunction (BHJ). Herein, new small molecule donors with symmetric/asymmetric hybrid cyclopentyl‐hexyl side chains are designed, accounting for manipulated intermolecular interactions and BHJ morphology. Theoretical and experimental results reveal that the asymmetric cyclopentyl‐hexyl side chains modification has a significant influence on potential energy surface and intermolecular interaction that can ensure preferable molecular assembly and regulate the D/A interfacial energetics, thus boosting the exciton dissociation and charge transport when pairing with a wide‐used acceptor L8‐BO. Concurrently, a nanoscale bicontinuous interpenetrating network with optimal domain size can be fully evolved in the BHJ layer. As a consequence, the As‐TCp‐based binary device achieves a superior PCE of 16.46% in comparison to that of the controlled symmetric counterparts S‐BF (14.92%) and A‐TCp (15.77%), and ranks one of best performance among ASM‐OSCs. This study demonstrates that precise manipulation of the cyclo‐alkyl chain in combination with the asymmetric 2D side chain strategy is an effective synergistic approach to control intermolecular interaction and nanoscale bicontinuous phase separation for achieving high‐performance ASM‐OSCs.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3