Affiliation:
1. Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials Ministry of Education School of Materials Science and Engineering Shandong University Jinan 250061 China
2. Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices Hubei University of Arts and Science Xiangyang 441053 China
3. Institute of Chemistry Free University of Berlin Arnimallee 22 D‐14195 Berlin Germany
4. Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China
Abstract
AbstractHigh‐concentration “water‐in‐salt” (WIS) electrolytes with the wider electrochemical stability window (ESW) can give rise to safe, non‐flammable, and high‐energy aqueous potassium‐ion energy storage devices, thus highlighting the prospect for applications in grid‐scale energy storage. However, WIS electrolytes usually depend on highly concentrated salts, leading to serious concerns about cost and sustainability. Here, an aqueous low‐concentration‐based potassium‐ion hybrid electrolyte is demonstrated with the regulated core‐shell‐solvation structure by using an aprotic solvent, i.e., trimethyl phosphate, to limit the water activity. This aqueous hybrid electrolyte has a low salt concentration (1.6 mol L−1) of potassium trifluoromethanesulfonate but with an expanded ESW up to 3.4 V and the nonflammable property. Based on this dilute aqueous hybrid electrolyte, electrochemical double‐layer capacitors are capable of working within a large voltage range (0–2.4 V) at a wide range of temperatures from −20 to 60 °C. An aqueous potassium‐ion battery consisting of an organic 3,4,9,10‐perylenetetracarboxylic diimide anode, Prussian blue K1.5Mn0.61Fe0.39[Fe(CN)6]0.77·H2O cathode and this dilute aqueous hybrid electrolyte can operate well at rates between 0.2 and 4.0 C and deliver a high energy density of 66.5 Wh kg−1 as well as a durable cycling stability with a capacity retention of 84.5% after 600 cycles at 0.8 C.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献