Robust Phototaxis by Harnessing Implicit Communication in Modular Soft Robotic Systems

Author:

Schomaker H. A. H.1,Picella S.12,Küng Garcia A.1,van Laake L. C.1,Overvelde J. T. B.12ORCID

Affiliation:

1. Autonomous Matter Department AMOLF Science Park 104 Amsterdam 1098 XG the Netherlands

2. Institute for Complex Molecular Systems and Department of Mechanical Engineering Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB the Netherlands

Abstract

AbstractIn robotics, achieving adaptivity in complex environments is challenging. Traditional robotic systems use stiff materials and computationally expensive centralized controllers, while nature often favors soft materials and embodied intelligence. Inspired by nature's distributed intelligence, this study explores a decentralized approach for robust behavior in soft robotic systems without knowledge of their shape or environment. It is demonstrated that only a few basic rules implemented in identical modules that shape the soft robotic system can enable whole‐body phototaxis, navigating on a surface toward a light source, without explicit communication between modules or prior system knowledge. The results reveal the method's effectiveness in generating robust and adaptive behavior in dynamic and challenging environments. Moreover, the approach's simplicity makes it possible to illustrate and understand the underlying mechanism of the observed behavior, paying particular attention to the geometry of the assembled system and the effect of learning parameters. Consequently, the findings offer insights into the development of adaptive, autonomous robotic systems with minimal computational power, paving the way for robust and useful behavior in soft and microscale robots, as well as robotic matter, that operate in real‐world environments.

Funder

Horizon 2020

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3