Affiliation:
1. Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Materials Chemistry and Service Failure Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Engineering Research Center for Biomaterials and Medical Protective Materials School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
2. School of Physics and Electronic‐Information Engineering Hubei Engineering University Xiaogan 432000 China
3. Department of Chemistry and Biochemistry Utah State University Logan UT 84322 USA
4. Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
Abstract
AbstractThe expanded phthalocyanine (EPc) single‐layer sheets with embedded double transition metals (labeled as TM2EPc) are predicted to be a novel class of highly stable 2D materials with a series of fascinating properties by means of systematic first‐principles calculations, molecular dynamics, and Monte Carlo simulations. Excitingly, the ferromagnetic Cr2EPc and antiferromagnetic Mn2– and Fe2–EPc have high magnetic transition temperatures of 223 (TC), 217 (TN), and 325 K (TN), respectively. This makes them promising candidates for low‐dimensional spintronic applications. Unexpectedly, V2EPc is an antiferromagnetic metal with Dirac cone, while ferromagnetic Cr2EPc exhibits Dirac half‐metallicity. The ultra‐high Fermi velocities near Dirac cones render them promising candidates for applications in high‐speed nanoelectronics and spintronics. Several architectured type‐II heterojunctions show promising power conversion efficiency with maximum 25.19% for Ni2EPc/2H‐WSe2, which has great potential in excitonic solar cell applications. Diverse promising properties endow this class of materials multifunction, which paves the way towards the future applications in nanoelectronics, spintronics, optoelectronics, and photovoltaics.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献