Metal‐Organic Framework‐Based Electrocatalysts for Acidic Water Splitting

Author:

Zhou Shenghao1,Shi Lei1,Li Yanzhe1,Yang Tao2,Zhao Shenlong1ORCID

Affiliation:

1. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 P. R. China

2. TEMA‐Centre for Mechanical Technology and Automation Department of Mechanical Engineering University of Aveiro Aveiro 3810‐193 Portugal

Abstract

AbstractThe proton exchange membrane water electrolysis system has long been considered a promising technique for the generation of hydrogen owing to its high electrolytic efficiency, reliability, and quick response to renewable energy sources. At present, noble metals and their oxides (e.g., Pt, IrO2, and RuO2) are widely used as high active electrocatalysts for accelerating the conversion efficiency of the water electrolysis process, especially in acidic media. Nevertheless, the scarcity and instability seriously impede their large‐scale application in practice. In the past years, metal‐organic frameworks (MOFs) have proven to be an ideal platform for designing efficient and cost‐effective electrodes due to their unique physicochemical properties. In this review, the fundamental catalytic mechanisms of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic media are discussed first. Then, design strategies and advanced characterizations for MOF‐based water‐splitting catalysts are summarized. Finally, the recent research advances of MOF‐based electrocatalysts for HER and OER in acidic electrolytes, along with current challenges and future opportunities, are provided.

Funder

Programa Operacional Regional do Centro

Fundação para a Ciência e a Tecnologia

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3