Counterion Control and the Spectral Signatures of Polarons, Coupled Polarons, and Bipolarons in Doped P3HT Films

Author:

Wu Eric C.1,Salamat Charlene Z.1,Ruiz Omar León1,Qu Thomas1,Kim Alexis1,Tolbert Sarah H.12,Schwartz Benjamin J.1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095‐1569 USA

2. Department of Materials Science and Engineering University of California, Los Angeles Los Angeles CA 90095‐1595 USA

Abstract

AbstractWhen an electron is removed from a conjugated polymer, such as poly(3‐hexylthiophene‐2,5‐diyl) (P3HT), the remaining hole and associated change in the polymer backbone structure from aromatic to quinoidal are referred to as a polaron. Bipolarons are created by removing the unpaired electron from an already‐oxidized polymer segment. In electrochemically‐doped P3HT films, polarons, and bipolarons are readily observed, but in chemically‐doped P3HT films, bipolarons rarely form. This is explained by studying the effects of counterion position on the formation of polarons, strongly coupled polarons, and bipolarons using both spectroscopic and X‐ray diffraction experiments and time‐dependent density functional theory calculations. The counterion positions control whether two polarons spin‐pair to form a bipolaron or whether they strongly couple without spin‐pairing are found. When two counterions lie close to the same polymer segment, bipolarons can form, with an absorption spectrum that is blueshifted from that of a single polaron. Otherwise, polarons at high concentrations do not spin‐pair, but instead J‐couple, leading to a redshifted absorption spectrum. The counterion location needed for bipolaron formation is accompanied by a loss of polymer crystallinity. These results explain the observed formation order of single polarons, coupled single polarons, and singlet bipolarons in electrochemically‐ and chemically‐doped conjugated polymers.

Funder

National Science Foundation

U.S. Department of Energy

Office of Science

Argonne National Laboratory

Division of Chemistry

Division of Materials Research

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3