Polar Layered Bismuth‐Rich Oxyhalide Piezoelectrics Bi4O5X2 (XBr, I): Efficient Piezocatalytic Pure Water Splitting and Interlayer Anion‐Dependent Activity

Author:

Wang Chunyang1,Hu Cheng1,Chen Fang1,Li Haitao2,Zhang Yihe1,Ma Tianyi3,Huang Hongwei1ORCID

Affiliation:

1. Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Material Sciences and Technology China University of Geosciences (Beijing) Beijing 100083 P. R. China

2. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China

3. School of Science RMIT University Melbourne VIC 3000 Australia

Abstract

AbstractPiezocatalytic pure water splitting for H2 evolution carries the virtues of efficacious utilization of mechanical energy, easy operation, and high value‐added products, while lacking desirable piezoelectrics for high chemical energy production. Here, two polar layered bismuth‐rich oxyhalides Bi4O5X2 (XBr, I) thin nanosheets (≈4 nm) are first exploited as efficient piezocatalysts to be capable of dissociating pure water. The unique asymmetrical layered structures of Bi4O5X2 (XBr, I) composed of the interleaved [Bi4O5]2+ layer and double X ions slabs along the [1 0 1_] orientation cause large intrinsic dipole moment, excellent piezoelectricity and easy deformation. Without any cocatalyst and sacrificial agent, Bi4O5Br2 and Bi4O5I2 thin nanosheets display remarkable piezocatalytic H2 production rate of 1149.0 and 764.5 µmol g−1 h−1, respectively, standing among the best piezocatalysts, accompanied by H2O2 and hydroxyl radicals (·OH) as oxidative products. The smaller radius and higher electronegativity of interleaved Br than I cause a more strongly polar crystal structure in Bi4O5Br2, contributing to the higher piezocatalytic activity compared to Bi4O5I2. This study broadens the scope of piezoelectric materials applied to sustainable energy catalysis by efficiently converting mechanical energy and illustrates the importance of crystal configuration and composition in fabricating efficient piezocatalytic systems.

Funder

National Basic Research Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3