Mechanistic Origin for High Structural Stability of Single Crystalline Nickel‐Rich Cathode Materials Via Al and Sm Co‐Doping

Author:

Li Jing1,Zhong Wentao1,Deng Qiang1,Zhang Qimeng1,Lin Zhang1,Yang Chenghao1ORCID

Affiliation:

1. Guangzhou Key Laboratory for Surface Chemistry of Energy Materials New Energy Research Institute School of Environment and Energy South China University of Technology Guangzhou 510006 China

Abstract

AbstractNickel‐rich layered oxides have attracted many attentions for their superior specific capacity and low cost, but they are subjected to fast structural degradation during cycling. Herein, the Al and Sm co‐doped LiNi0.83Co0.07Mn0.10O2 (SC‐NCM‐AS) single‐crystal is demonstrated to overcome their cycling instability issue, and its mechanistic origin for improved structural stability is investigated. It is found that soluble Al ions are homogenously incorporated in the LiNi0.83Co0.07Mn0.10O2 (SC‐NCM) lattice, while Sm ions tends to aggregate in the SC‐NCM outer surface layer. The Li/Ni cation disordering is greatly suppressed through the pillaring effect of stronger AlO bond in SC‐NCM single crystals. Sm‐concentrated outer surface layer can effectively prevent the dissolution of transition metals from SC‐NCM‐AS and inhibit undesirable side reactions induced by the organic electrolyte. This synergistic effect facilitates to suppress the formation of LiOH/Li2CO3 and oxygen vacancies, resulting in released the internal strain, decreased in‐plane transition metals migration and gliding, and eventually preventing formation of nanocracks in SC‐NCM‐AS single crystals upon cycling at high cut‐off voltage. Consequently, Al and Sm co‐doped SC‐NCM exhibits a high specific capacity of 222.4 mAh g−1 and remarkable cycling performance with a capacity retention of 91.1% for 100 cycles.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3