Chemically Customizing Mechanical Properties and Optical Transparency in Underwater Superoleophobic Coating

Author:

Borbora Angana1,Dhar Manideepa1,Shome Arpita1,Barman Nishanta1,Roy Swaraj1,Manna Uttam123ORCID

Affiliation:

1. Department of Chemistry Indian Institute of Technology‐Guwahati Kamrup Assam 781039 India

2. Centre for Nanotechnology Indian Institute of Technology‐Guwahati Kamrup Assam 781039 India

3. School of Health science & Technology Indian Institute of Technology‐Guwahati Kamrup Assam 781039 India

Abstract

AbstractThe inherent ability of bio‐inspired underwater superoleophobicity to prevent oil/oily fouling underwater makes it appropriate for a wide range of applications related to environmental remediation, bio‐adhesion, microfluidics, chemical sensing, etc.; however, the co‐association of mechanical durability and optical transparency is essential for realistic performance. While the design of mechanically durable and absolutely optically transparent underwater superoleophobic coating remains challenging, here, a covalently cross‐linked and chemically reactive sol‐gel conversion process is introduced through 1,4‐conjugate addition reaction to achieve a substrate‐independent and tolerant coating for orthogonally modulating the underwater oil wettability, optical transparency, and even mechanical properties of highly deformable porous and fibrous substrates. The post‐modification of residual chemical reactivity in the prepared coating allows to embed underwater superoleophobicity, and the β‐amino‐ester‐cross‐links improve the mechanical property of selected deformable substrates. Moreover, it displayed unperturbed performance even after prolonged (30 days) exposures in practically relevant chemically harsh aquatic conditions—including extremes of pH, artificial seawater, surfactant contaminated water, etc. The approach is successfully applied to coat various substrates—including porous, fibrous, and planar objects, and it would be useful in protecting various relevant marine infrastructures from oil/oily fouling, and various other potential applications.

Funder

Science and Engineering Research Board

Douglas Bomford Trust

Department of Biotechnology, Government of West Bengal

Ministry of Electronics and Information technology

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3