Self‐Doped Mixed Ionic‐Electronic Conductors to Tune the Threshold Voltage and the Mode of Operation in Organic Electrochemical Transistors

Author:

Hungenberg Julian1,Hochgesang Adrian1,Meichsner Florian1,Thelakkat Mukundan2ORCID

Affiliation:

1. Applied Functional Polymers University of Bayreuth Universitätsstr. 30 95447 Bayreuth Germany

2. Applied Functional Polymers and Bavarian Polymer Institute University of Bayreuth Universitätsstr. 30 95447 Bayreuth Germany

Abstract

AbstractOrganic mixed ionic‐electronic conductors with tunable doping, low threshold voltages, and air stability are crucial for bioelectronic applications. A homopolymer based on an alkoxy thiophene monomer and its copolymer with a thiophene carrying ethylene glycol side chains are synthesized and converted to self‐doped conjugated polyelectrolytes, P3HOTSTMA+, and P3HOTSTMA+‐co‐P3MEEET. The self‐doping occurs during the conversion to polyelectrolytes. Both polyelectrolytes show high electrical conductivity without any external dopants. UV–Vis–NIR spectroscopy and spectroelectrochemistry confirm excellent air stability of the doped state. In an organic electrochemical transistor (OECT), the P3HOTSTMA+ operates in depletion mode, while P3HOTSTMA+‐co‐P3MEEET exhibits accumulation mode of operation with low threshold voltage, both showing fast response times. On the other hand, the non‐doped homopolymer, P3MEEET, shows a high negative threshold voltage in accumulation mode. Thus, copolymerization with the self‐dopable monomer changes the mode of operation as well as the threshold voltage substantially. Ultraviolet photoelectron spectroscopy reveals a considerable reduction of the hole injection barrier for the self‐doped system P3HOTSTMA+. Mott‐Schottky analysis shows reduction in charge carrier concentration in the copolymer compared to the homopolymer. Thus, the copolymerization strategy with a self‐dopable monomer is an efficient tool for tuning the degree of doping leading to low threshold voltage in OECTs.

Funder

Bayerisches Staatsministerium für Wissenschaft und Kunst

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3