Affiliation:
1. Key Laboratory of Advanced Display and System Applications of Ministry of Education Shanghai University Shanghai 200072 China
2. Experimental Center of Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
3. School of Molecular and Life Science Curtin University Bentley WA 6102 Australia
4. Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials Shanghai University 149 Yanchang Road Shanghai 201899 China
Abstract
AbstractMetal halide perovskite light‐emitting diodes (PeLEDs) are expected to be the next‐generation display technology due to their unique optoelectronic properties. Currently, the external quantum efficiencies of PeLEDs based on solution‐processed fabrication methods already exceed 20%. However, there are still many challenges existing in solution‐based PeLEDs that inhibit their commercialization. Recently, vacuum deposition techniques of perovskites have drawn much attention because of the ability to grow dense and uniform large‐area perovskite films with precisely controlled thickness, which is compatible with state‐of‐the‐art organic LED manufacturing processes. Despite the promising prospects of vacuum‐based PeLEDs, some challenges remain to be addressed to achieve PeLEDs with both high efficiency and high stability that are required for practical applications such as active‐matrix displays. This requires precise control of the film morphology, composition, and interface during the deposition process through fine‐tuning of the substrate temperature, deposition rate, vacuum level, precursor formulation, and post‐treatment conditions. In this review, it focuses on the key requirements for vacuum‐processed PeLEDs, highlights the recent advances in materials and devices of PeLEDs, and emphasize vacuum evaporation methods as well as the corresponding device performance. Possible approaches to improve the efficiency and the long‐term operational stability of vacuum‐processed PeLEDs are discussed.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai Municipality
Program of Shanghai Academic Research Leader
China Postdoctoral Science Foundation
National Key Research and Development Program of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献