Donor‐Acceptor‐Donor Organic Small Molecules as Hole Transfer Vehicle Covalently Coupled Znln2S4 Nanosheets for Efficient Photocatalytic Hydrogen Evolution

Author:

Xiao Taizhong1,Wang Lei2,Li Kui1ORCID,Tang Junfu1,Du Rongkai1,Rao Shidan1,Wu Mingmei1ORCID

Affiliation:

1. School of Chemical Engineering and Technology/School of Marine Sciences Sun Yat‐sen University Zhuhai Guangdong 519082 P. R. China

2. College of Materials and Chemical Engineering China Three Gorges University Yichang Hubei 443002 P. R. China

Abstract

AbstractSluggish kinetics of photoexcited charge carriers in photocatalysts, slow hole transfer in oxidation half‐reaction, and consequent fast charge recombination on photocatalyst surface are the Achilles' heel limiting the efficiency of photocatalytic hydrogen evolution (PHE). Herein, the effectiveness of covalent binding alternating D‐A‐D organic small molecules (triphenylamine as the donor unit and benzothiadiazole as the acceptor unit) to Znln2S4 (ZIS) nanosheets in the design and development of highly efficient PHE photocatalysts is demonstrated. The covalent grafting of D‐A‐D molecules broadens the photo‐responsive range of ZIS nanosheets, significantly increasing the density of photogenerated charge carriers. More importantly, D‐A‐D organic small molecules can efficiently extract surface photogenerated holes and suppress the recombination of surface photogenerated electron‐hole pairs, thus facilitating the rapid consumption of retained photogenerated electrons for proton reduction to generate H2 with fast kinetics. Consequently, the optimized PHE rate of the ZIS@DAD hybrid catalyst reaches 28.25 mmol g−1 h−1, a 4.2‐fold improvement over that of ZnIn2S4 nanosheets. The covalent integration of D‐A‐D molecules onto inorganic semiconductor photocatalysts represents a novel and highly efficient strategy for optimizing the overall PHE process. This approach provides a fertile new ground for creating efficient solar‐to‐hydrogen systems.

Funder

National Natural Science Foundation of China

Guangzhou Science, Technology and Innovation Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3