Rapid Self‐Healing of Robust Surface‐Tethered Covalent Adaptable Coatings

Author:

Capets Jacob A.1,Yost Sierra F.1,Vogt Bryan D.1,Pester Christian W.12ORCID

Affiliation:

1. Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA

2. Department of Materials Science and Engineering Department of Chemistry The Pennsylvania State University University Park PA 16802 USA

Abstract

AbstractThe incorporation of self‐healing properties to repair scratches (or other minor damage) has revolutionized the coating industry by increasing service life, sustainability, and optical appearance. This work addresses challenges with the robustness of self‐healing coatings through the inclusion of surface‐tethered covalently adaptable networks (CANs). Surface‐initiated polymerization is combined with spray‐coating to deposit polymers to produce coatings with reversible crosslinks to the tethered chains. These robust coatings are based on reversible vinylogous urethane bonds using 2‐(acetoacetoxy)ethyl methacrylate‐based polymers and tris(2‐aminoethyl) amine (TREN). Here, TREN enables reversible covalent bonding between the spray‐coated and surface‐tethered polymers. Without this polymer brush layer, the physisorbed CAN coatings fail to self‐heal completely, are labile to solvent, and exhibit shear delamination upon scratching. The utility of this tethered coating approach is highlighted through its ability to autonomously self‐heal incisions within seconds at elevated temperatures, or more steadily under ambient conditions. The key to these advancements is the use of polymer brushes as a primer layer to attach the CAN to enhance healing and improve the environmental robustness of the coating.

Funder

National Defense Science and Engineering Graduate

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3