Rapid and Scar Free Wound Repair by Using a Biologically Flexible and Conductive Dressing Under Electrical Stimulation

Author:

Yang Shuo‐Bing1,Yuan Zheng‐Dong2,Wang Tong‐Tong2,Huang Jing1,Wang Wei1,Li Ting1,Wang Yang1,Dong Wei‐Fu1ORCID,Yuan Feng‐Lai2

Affiliation:

1. The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi 214122 China

2. Institute of Integrated Chinese and Western Medicine Affiliated Hospital of Jiangnan University Wuxi 214036 China

Abstract

AbstractAbnormal healing following skin injury, such as slow healing and scar formation, can significantly affect an individual's life. Complex treatment methods and cumbersome instruments have reduced the efficacy of treating such diseases. In this study, a novel biocompatible liquid metal (LM) composite wound dressing (LGPU) is designed by synthesizing polyurea polyurethane (PU) and blending it with LM modified with glutathione (GSH), a bioactive three‐peptide compound. The effects of external electrical stimulation (ES) on wound‐induced hair follicle neogenesis are explored. The dressings exhibited a few important properties, including conductivity, high stretchability, recyclability, and, most importantly, excellent self‐healing capacity, owing to the liquid nature of the LM fillers and the highly dynamic characteristics of hydrogen bonds. Furthermore, the combination therapy with LGPU and ES promoted fibroblast migration and accelerated wound healing. The wounds treated with the combination therapy fully healed in nine days, while the wounds in the blank group are still in a scabbing state. Remarkably, this treatment method can activate the regeneration and healthy growth of hair follicles at the site of injury, which is beneficial for reducing wound scarring. Collectively, this innovative therapy provides a facile strategy to accelerate skin wound healing and achieve scar‐free repair.

Funder

National Natural Science Foundation of China

Wuxi Health and Family Planning Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3