Unraveling P‐Type and N‐Type Interfaces in Superconducting Infinite‐Layer Nickelate Thin Films

Author:

Raji Aravind12,Gutiérrez‐Llorente Araceli34,Zhang Dongxin4,Li Xiaoyan1,Bibes Manuel4,Iglesias Lucia4,Rueff Jean‐Pascal25,Gloter Alexandre1ORCID

Affiliation:

1. Laboratoire de Physique des Solides, CNRS Université Paris‐Saclay Orsay 91405 France

2. Synchrotron SOLEIL L'Orme des Merisiers BP 48 St Aubin Gif sur Yvette 91192 France

3. Universidad Rey Juan Carlos Escuela Superior de Ciencias Experimentales y Tecnología Madrid 28933 Spain

4. Laboratoire Albert Fert, CNRS, Thales Université Paris‐Saclay Palaiseau 91767 France

5. LCPMR Sorbonne Université, CNRS Paris 75005 France

Abstract

AbstractAfter decades of research, superconductivity is finally found in nickel‐based analogs of superconducting cuprates, with infinite‐layer (IL) structure. These results are so far restricted to thin films in the case of IL‐nickelates. Therefore, the nature of the interface with the substrate, and how it couples with the thin film properties is still an open question. Here, using scanning transmission electron microscopy (STEM)‐ electron energy loss spectroscopy (EELS), a novel p‐type interface defined by SrO termination with the SrTiO3 substrate is observed in superconducting (SC) IL‐praseodymium nickelate samples. Its interfacial charge and polarity are compared with the previously reported n‐type interface characterized by TiO2 termination. In combination with ab‐initio calculations, it is found that the influence of the interface on the electronic structure is local and does not extend beyond 2–3 unit cells into the thin film. This decouples the direct influence of the interface in driving the superconductivity, and indicates that the IL‐nickelate thin films do not have a universal interface model. Insights into the spatial hole‐distribution in SC samples, provided by monochromated EELS and total reflection‐hard X‐ray photoemission spectroscopy, suggest that this particular distribution might be directly influencing superconductivity.

Funder

Agence Nationale de la Recherche

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3