Quasi‐Zero Volume Strain Cathode Materials for Sodium Ion Battery through Synergetic Substitution Effect of Li and Mg

Author:

Shen Ming‐Yuan1,Wang Jing‐Song1,Ren Zhouhong2,Wu Tao1,Liu Xi2,Chen Liwei2,Li Wen‐Cui1,Lu An‐Hui1ORCID

Affiliation:

1. State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China

2. School of Chemistry and Chemical Engineering in‐situ Center for Physical Sciences Frontiers Science Center for Transformative Molecules, and Energy Device Research Center (SEED) Shanghai Jiao Tong University Shanghai 200240 P. R. China

Abstract

AbstractP2‐type layered oxide material Na2/3Ni1/3Mn2/3O2 is a competitive candidate for sodium‐ion batteries (SIBs). Nevertheless, it suffers from the strong P2–O2 phase transition during charging to the high voltage regime, rendering drastic volume variations and poor cycling performance. Here, a Quasi‐zero strain P2‐Na0.75Li0.15Mg0.05Ni0.1Mn0.7O2 cathode is synthesized, which reflects the vanishing P2–O2 transition with a volume change as low as 0.49%, thus resulting in the material an excellent cycling performance (83.9% capacity retention after 500 cycles at 5 C). The low‐volume strain can be attributed to two aspects: (1) the Mg2+ riveted in the Na layer can act as a “pillar” to stabilize the crystal structure under the condition of sodium removal, thus restricting the structural changes under high voltage. (2) The entry of Li+ into the transition metal (TM) layer can mitigate the electron localization in the highly desodiation state and can effectively immobilize the coordination oxygen atoms, thus suppressing the slip of P2–O2 transition. This study not only provides a new insight of Li and Mg synergetic substitution effect on the structural stability of P2‐type cathode, but also an efficient avenue for developing cathode materials of SIBs with ultralow bulk strain.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3