Hybrid Co‐Spinning and Melt Electrowriting Approach Enables Fabrication of Heterotypic Tubular Scaffolds Resembling the Non‐Linear Mechanical Properties of Human Blood Vessels

Author:

Bartolf‐Kopp Michael1ORCID,de Silva Leanne23ORCID,Rosenberg Antoine J. W. P.23,Groll Jürgen1ORCID,Gawlitta Debby23ORCID,Jungst Tomasz1ORCID

Affiliation:

1. Department of Functional Materials in Medicine and Dentistry Institute of Functional Materials and Biofabrication (IFB) KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI) University of Würzburg Pleicherwall 2 97070 Würzburg Germany

2. Department of Oral and Maxillofacial Surgery and Special Dental Care University Medical Center Utrecht Utrecht University Utrecht GA 3508 The Netherlands

3. Regenerative Medicine Center Utrecht Utrecht CT 3584 The Netherlands

Abstract

AbstractThe current barrier to clinical translation of small‐caliber tissue‐engineered vascular grafts (TEVGs) is the long‐term patency upon implantation in vivo. Key contributors are thrombosis and stenosis caused by inadequate mechanical graft properties and mismatch of hemodynamic conditions. Herein, the authors report on an approach for the fabrication of a mechanically tunable bilayered composite TEVGs. Using a combination of solution electrospinning (SES) and melt electrowriting (MEW), it is shown that the mechanical properties can be tailored and the natural J‐shape of the stress–strain relationship can be recapitulated. Upon cell seeding, the luminal surface of the composite SES layers permits the formation of a confluent mature endothelium. MEW fibers provide structural support to promote stacking and orientation of MSCs in a near‐circumferential native vessel like direction. By adjusting the ratios of poly(ε‐caprolactone) and poly(ester‐urethane) during the SES process, TEVGs with a range of tunable mechanical properties can be manufactured. Notably, this hybrid approach permits modulation of the radial tensile properties of TEVGs to approximate different native vessels. Overall, a strategy for the fabrication of TEVGs with mechanical properties resembling those of native vessels which can help to accommodate long‐term patency of TEVGs at various treatment sites in future applications is demonstrated.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3