Surface Facet Dependent Cycling Stability of Layered Cathodes

Author:

Wang Kuan12,Zhang Zhengfeng1,Ding Yang1,Cheng Sulan1,Xiao Biwei2,Sui Manling1,Yan Pengfei1ORCID

Affiliation:

1. Beijing Key Laboratory of Microstructure and Properties of Solids Faculty of Materials and Manufacturing Beijing University of Technology Beijing 100124 China

2. GRINM (Guangdong) Institute for Advanced Materials and Technology Foshan Guangdong 528051 China

Abstract

AbstractHigh chemical and mechanical stability of cathode surface are the prerequisites enabling high‐performance rechargeable battery. Surface facet is among the surface properties that dictate surface stability and cycling performance, while its underlying mechanism remains elusive. Herein, it is reported that surface stability is closely related to the surface facet for a variety of layered cathodes. The investigation shows that surface structure of P2 layered cathode undergoes sequential transformation upon cycling, which results in severe surface degradation. This study finds that the surface facets perpendicular to the (002) planes experience severe cracking and corrosion, while other surface facets are much more stable. The surface stability difference mainly comes from a geometric effect on strain release, which determines the mechanical stability of surface. Chemically, transition metal condensation forms a passivation layer to effectively prevent the inward propagation of surface degradation. Therefore, the surface facets oblique to the layered‐planes are intrinsically more resistant to mechanical cracking and chemical corrosion, which is further verified as a common effect in several O3‐type layered cathodes. This work not only deepens the understanding of the mechanism how surface facet affects surface stability, but also validates surface facet regulation can be a promising strategy for optimizing battery materials.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3