A 3D Cell‐Free Bone Model Shows Collagen Mineralization is Driven and Controlled by the Matrix

Author:

van der Meijden Robin H.M.12ORCID,Daviran Deniz12,Rutten Luco12ORCID,Walboomers X. Frank3ORCID,Macías‐Sánchez Elena124ORCID,Sommerdijk Nico12ORCID,Akiva Anat12ORCID

Affiliation:

1. Department of Medical BioSciences Radboud University Medical Center Geert‐Grooteplein Zuid 28 Nijmegen 6525 GA The Netherlands

2. Electron Microscopy Centre Radboudumc Technology Center Microscopy Radboud University Medical Center Geert‐Grooteplein Noord 29 Nijmegen 6525 GA The Netherlands

3. Regenerative Biomaterials Group Department of Dentistry Radboud University Medical Center Philips van Leydenlaan 25 Nijmegen 6525 EX The Netherlands

4. Department of Stratigraphy and Paleontology University of Granada Avenida de la Fuente Nueva S/N CP:18071 Granada Granada Spain

Abstract

AbstractOsteons, the main organizational components of human compact bone, are cylindrical structures composed of layers of mineralized collagen fibrils, called lamellae. These lamellae have different orientations, different degrees of organization, and different degrees of mineralization where the intrafibrillar and extrafibrillar minerals are intergrown into one continuous network of oriented crystals. While cellular activity is clearly the source of the organic matrix, recent in vitro studies call into question whether the cells are also involved in matrix mineralization and suggest that this process could be simply driven by the interactions of the mineral with extracellular matrix. Through the remineralization of demineralized bone matrix, the complete multiscale reconstruction of the 3D structure and composition of the osteon without cellular involvement are demonstrated. Then, this cell‐free in vitro system is explored as a realistic, functional model for the in situ investigation of matrix‐controlled mineralization processes. Combined Raman and electron microscopy indicate that glycosaminoglycans (GAGs) play a more prominent role than generally assumed in the matrix–mineral interactions. The experiments also show that the organization of the collagen is in part a result of its interaction with the developing mineral.

Funder

H2020 European Research Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3