Affiliation:
1. Ningbo Institute of Materials Technology and Engineering (NIMTE) Chinese Academy of Sciences (CAS) Ningbo 315201 P. R. China
2. Guangzhou Key Laboratory of Clean Transportation Energy Chemistry Guangdong Provincial Key Laboratory of Plant Resources Biorefinery School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
Abstract
AbstractLi‐rich layered oxides (LLOs) have been considered as the most promising cathode materials for achieving high energy density Li‐ion batteries. However, they suffer from continuous voltage decay during cycling, which seriously shortens the lifespan of the battery in practical applications. This review comprehensively elaborates and summarizes the state‐of‐the‐art of the research in this field. It is started from the proposed mechanism of voltage decay that refers to the phase transition, microscopic defects, and oxygen redox or release. Furthermore, several strategies to mitigate the voltage decay of LLOs from different scales, such as surface modification, elemental doping, regulation of components, control of defect, and morphology design are summarized. Finally, a systematic outlook on the real root of voltage decay is provided, and more importantly, a potential solution to voltage recovery from electrochemistry. Based on this progress, some effective strategies with multiple scales will be feasible to create the conditions for their commercialization in the future.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Ningbo
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献