Hierarchical Architectural Structures Induce High Performance in n‐Type GeTe‐Based Thermoelectrics

Author:

Wang De‐Zhuang1,Liu Wei‐Di23ORCID,Li Meng3,Zheng Kun4,Hu Hanwen4,Yin Liang‐Cao1,Wang Yifeng5,Zhu He6,Shi Xiao‐Lei3,Yang Xiaoning1,Liu Qingfeng1,Chen Zhi‐Gang3ORCID

Affiliation:

1. State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing 210009 China

2. Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia

3. School of Chemistry and Physics Queensland University of Technology Brisbane QLD 4000 Australia

4. Beijing Key Lab of Microstructure and Property of Solids Institute of Microstructure and Properties of Advanced Materials Beijing University of Technology Beijing 100124 China

5. College of Materials Science and Engineering Nanjing Tech University Nanjing 211816 China

6. School of Materials Science and Engineering Nanjing University of Science & Technology Nanjing 210094 China

Abstract

AbstractCompatible p‐ and n‐type materials are necessary for high‐performance GeTe thermoelectric modules, where the n‐type counterparts are in urgent need. Here, it is reported that the p‐type GeTe can be tuned into n‐type by decreasing the formation energy of Te vacancies via AgBiTe2 alloying. AgBiTe2 alloying induces Ag2Te precipitates and tunes the carrier concentration close to the optimal level, leading to a high‐power factor of 6.2 µW cm−1 K−2 at 423 K. Particularly, the observed hierarchical architectural structures, including phase boundaries, nano‐precipitates, and point defects, contribute an ultralow lattice thermal conductivity of 0.39 W m−1 K−1 at 423 K. Correspondingly, an increased ZT of 0.5 at 423 K is observed in n‐type (GeTe)0.45(AgBiTe2)0.55. Furthermore, a single‐leg module demonstrates a maximum η of 6.6% at the temperature range from 300 to 500 K. This study indicates that AgBiTe2 alloying can successfully turn GeTe into n‐type with simultaneously optimized thermoelectric performance.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Australian Research Council

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3