Regulating Micro‐phase Structure in Plastic Crystal Gel Polymer Electrolyte for Quasi‐Solid‐State Lithium Metal Batteries

Author:

Fu Chuankai1,Zhang Xu1,Huo Hua1,Zhu Jiaming1,Xu Huifang1,Wang Liguang2ORCID,Ma Yulin1,Gao Yunzhi1,Yin Geping1,Zuo Pengjian1,Lu Jun2ORCID

Affiliation:

1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China

2. College of Chemical and Biological Engineering Zhejiang University Hangzhou 310058 China

Abstract

AbstractQuasi‐solid‐state lithium metal batteries (QSSLMBs) necessitate stable electro‐electrolyte interfaces to ensure reliable stationary power supply, thereby placing significant emphasis on the development of polymer electrolytes with high and uniform conductivity. However, while preparing the polymer electrolytes, the uncontrolled radical polymerization process of polymer electrolytes often leads to localized phase agglomeration, resulting in inhomogeneous physiochemical properties. In this study, a method is proposed to regulate the micro‐phase structure, aiming to substantially enhance the homogeneity of physiochemical properties, specifically the ionic conductivity, through the optimization of organic monomer polymerization behavior. This proposed polymer electrolyte determines enhanced reaction kinetics and reactivity at the interfaces, thereby effectively regulating the Li plating/stripping behavior and mitigating dendrite formation. The Li||Li symmetrical cell employing the proposed polymer electrolyte demonstrates exceptional cyclic durability, surpassing 1000 h at 0.2 mA cm−2. Additionally, the QSSLMBs employing high‐voltage LiCoO2 as the cathode exhibit remarkable improvements in electrochemical performance, particularly in terms of cycling stability. The insights derived from this research suggest that the regulation of micro‐phase structure in polymer electrolytes represents a promising strategy to enhance the practicability of QSSLMBs.

Funder

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3