Intercalative Motifs‐Induced Space Confinement and Bonding Covalency Enhancement Enable Ultrafast and Large Sodium Storage

Author:

Lv Zhuoran12,Peng Baixin12,Lv Ximeng3,Gao Yusha12,Hu Keyan4,Dong Wujie1,Zheng Gengfeng3,Huang Fuqiang125ORCID

Affiliation:

1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

3. Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200438 China

4. School of Mechanical and Electrical Engineering Jingdezhen Ceramic Institute Jingdezhen 333403 China

5. State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China

Abstract

AbstractAlloying‐type metal sulfides with high theoretical capacities are promising anodes for sodium‐ion batteries, but suffer from sluggish sodiation kinetics and huge volume expansion. Introducing intercalative motifs into alloying‐type metal sulfides is an efficient strategy to solve the above issues. Herein, robust intercalative InS motifs are grafted to high‐capacity layered Bi2S3 to form a cation‐disordered (BiIn)2S3, synergistically realizing high‐rate and large‐capacity sodium storage. The InS motif with strong bonding serves as a space‐confinement unit to buffer the volume expansion, maintaining superior structural stability. Moreover, the grafted high‐metallicity Indium increases the bonding covalency of BiS, realizing controllable reconstruction of BiS bond during cycling to effectively prevent the migration and aggregation of atomic Bi. The novel (BiIn)2S3 anode delivers a high capacity of 537 mAh g−1 at 0.4 C and a superior high‐rate stability of 247 mAh g−1 at 40 C over 10000 cycles. Further in situ and ex situ characterizations reveal the in‐depth reaction mechanism and the breakage and formation of reversible BiS bonds. The proposed space confinement and bonding covalency enhancement strategy via grafting intercalative motifs can be conducive to developing novel high‐rate and large‐capacity anodes.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3