Nanosecond Phase‐Transition Dynamics in Elemental Tellurium

Author:

Sun Yuting12,Li Bowen34,Yang Tieying5,Yang Qun6,Yu Haibin6,Gotoh Tamihiro7,Shi Chenyi8,Shen Jiabin9,Zhou Peng9,Elliott Stephen R.1011,Li Huanglong3,Song Zhitang1,Zhu Min1ORCID

Affiliation:

1. National Key Laboratory of Materials for Integrated Circuits Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China

2. University of Chinese Academy of Sciences Beijing 100029 China

3. Department of Precision Instrument Center for Brain Inspired Computing Research Tsinghua University Beijing 100084 China

4. State Grid Henan Electric Power Research Institute Zhengzhou 450052 China

5. Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China

6. Wuhan National High Magnetic Field Center and School of Physics Huazhong University of Science and Technology Wuhan 430074 China

7. Department of Physics Graduate School of Science and Technology Gunma University Maebashi 3718510 Japan

8. Faculty of Science The University of Hong Kong Hong Kong 999077 China

9. State Key Laboratory of ASIC and System Department of Microelectronics Fudan University Shanghai 200433 China

10. Trinity College University of Cambridge Cambridge CB21TQ UK

11. Physical and Theoretical Chemistry Laboratory University of Oxford Oxford OX13QZ UK

Abstract

AbstractElemental tellurium, a prototypical one‐dimensional van der Waals material, has recently been found to crystallize quickly from the liquid on a nanosecond timescale, yet the inherent mechanism is not clear. Here, by combining in situ high‐energy synchrotron radiation X‐ray diffraction with ab initio molecular‐dynamics simulation, it is found that trigonal crystalline Te completely melts into the liquid phase at 450 °C, and recrystallizes into the trigonal phase for temperatures lower than 380 °C without the formation of any other phase. This directly confirms the recent proposal of a crystal‐liquid‐crystal phase transition in this material underlying the observed electrical‐switching process. Atomic‐scale, melt‐quench computer simulations show that liquid Te is capable of crystallizing within a time of 25 ps in the vicinity of templating crystallization interfaces. This ultrafast crystallization ability of Te can be understood as being due to delayed Peierls distortions during a quench and therefore a high atomic mobility over a wide range of temperature. This finding opens the way to develop a crystal‐liquid‐crystal, phase‐transition‐based selector switch with an ultrafast switching speed.

Funder

Shanghai Rising-Star Program

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3