Strong Electronic Interaction between Amorphous MnO2 Nanosheets and Ultrafine Pd Nanoparticles toward Enhanced Oxygen Reduction and Ethylene Glycol Oxidation Reactions

Author:

Wang Ying1ORCID,Liu Jiali1,Yuan Hongjie1,Liu Fan1,Hu Tianjun1,Yang Benqun2

Affiliation:

1. Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University TaiYuan 030032 China

2. College of Chemical Engineering and Technology Tianshui Normal University TianShui 741001 China

Abstract

AbstractStrengthening the interface interaction between metal and support is an efficient strategy to improve the intrinsic activity and reduce the amount of noble metal. Amorphization of support is an effective approach for enhancing the metal‐support interaction due to the numerous surface defects in amorphous structure. In this work, a Pd/a‐MnO2 electrocatalyst containing ultrafine and well‐dispersive Pd nanoparticles and amorphous MnO2 nanosheets is successfully synthesized via a simple and rapid wet chemical method. Differing from the crystal counterpart (Pd/c‐MnO2), the flexible structure of amorphous support can be more favorable to electron transfer and further enhance the metal‐support interaction. The synergism between Pd and amorphous MnO2 results in the downshift of the d‐band center, which is beneficial for the desorption of critical intermediates both in oxygen reduction reaction (ORR) and in ethylene glycol oxidation (EGOR). Due to the lower *.OH desorption energy of Pd/a‐MnO2 surface, the rapid dissociation of *OH from Pd facilitates the formation of H2O in ORR, thus demonstrating superior ORR performance comparable to Pt/C. For EGOR, the presence of amorphous MnO2 promotes the formation of adsorbed OH species, which accelerates the desorption of intermediate CO from Pd sites, and thus exhibits excellent EGOR activity and stability.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3