Affiliation:
1. School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 P. R. China
2. Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center Jieyang 515200 P. R. China
3. Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
4. School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
Abstract
AbstractThe exploitation of bio‐based materials derived from renewable resources represents a pivotal strategic approach in addressing environmental pollution and alleviating the scarcity of fossil resources. 2,5‐Furandicarboxylic acid (FDCA) is the most potential substitute for terephthalic acid. Lignin is the most abundant aromatic biomass resource. However, the preparation of high‐performance lignin/FDCA‐based bio‐polyesters remains a formidable challenge. Herein, a multifunctional lignin‐modified polyester elastomer (LFPEe) is designed using FDCA‐based polyester oligomer (PPeF) and lignin (AOH) as building blocks. The LFPEe exhibits superior mechanical properties with the optimum tensile strength, fracture strain, and elastic recovery ratio up to 58.9 MPa, 610% and 88.9%, respectively, attributing to the formation of dual cross‐linking network with nanophase separation structure. Furthermore, leveraging the inherent characteristics of lignin, the LFPEe demonstrates excellent light‐controlled shape memory and excellent UV shielding performance. This innovative work not only breaks the performance dependence of FDCA‐based polyester on high molecular weight but also highlights a novel paradigm for value‐added utilization of lignin in sustainable bio‐polyesters.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献