Revealing the Untapped Potential of Photocatalytic Overall Water Splitting in Metal Organic Frameworks

Author:

Wang Caihua1,Wan Yangyang2,Yang Shaokang2,Xie Yuee1,Chu Shibing1,Chen Yuanping1ORCID,Yan Xiaohong2

Affiliation:

1. School of Physics and Electronic Engineering Jiangsu University Zhenjiang Jiangsu 212013 China

2. Institute for Advanced Materials School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu 212013 China

Abstract

AbstractThe past decade witnessed substantial attention toward metal‐organic frameworks (MOFs) for photocatalytic water splitting owing to their versatile structural and optoelectronic characteristics. However, MOFs capable of efficient photocatalytic overall water splitting (OWS) remain notably scarce. Although MOF‐based photocatalysts with OWS potential are highly promising due to their diverse building blocks and topological configurations, the vast number of possible MOFs renders traditional trial‐and‐error materials discovery approaches impractical. Herein, a data‐driven methodology that integrates machine learning with high‐throughput first‐principles computations to identify MOFs with OWS capability is presented. By systematically assessing factors including water stability, band gap, band positions, charge carrier transport, and optical absorption properties, 14 MOFs from the Quantum‐MOF (QMOF) database containing over 20,000 MOFs as promising candidates for visible‐light‐driven OWS are identified. Notably, five of them exhibit exceptional electronic and optical properties, outperforming previously reported MOF OWS photocatalysts, such as UIO66(Zr)‐NH2, MIL125(Ti)‐NH2, and MIL53(Al)‐NH2 is established. This work represents a large‐scale, data‐driven exploration of MOF‐based photocatalysts for water splitting, shedding light on the untapped potential of photocatalysis in MOFs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3