Enhancing Atmospheric Water Harvesting of MIL‐101 (Cr) MOF Sorbent with Rapid Desorption Enabled by Ni─Ni3S2 Photothermal Bridge

Author:

Chen Weicheng123,Liu Yangxi2,Xu Bolin1,Cheng Bin1,Ganesan Muthusankar1,Tan Yuxuan2,Luo Mingyun2,Chen Bingzhi2,Zhao Xiaolong3,Lin Ci3,Qin Tingting3,Luo Fan2,Fang Yutang2,Wang Shuangfeng2,Liang Xianghui2,Fu Wanwan4,Tan Bingqiong2,Ye Ruquan1,Leung Dennis Y.C.3,Ravi Sai Kishore1ORCID

Affiliation:

1. School of Energy and Environment City University of Hong Kong Hong Kong China

2. Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education South China University of Technology Guangzhou China

3. Department of Mechanical Engineering The University of Hong Kong Hong Kong China

4. School of Civil Engineering and Architecture Wuhan Polytechnic University Wuhan China

Abstract

AbstractMetal–organic frameworks (MOFs) have emerged as leading candidates for atmospheric water harvesting (AWH). Despite their high water uptake capacity, challenges persist in effective solar‐driven desorption for water collection. Addressing this, a photothermal bridge is introduced by in situ growth of Ni₃S₂ coating on a thermally conductive nickel mesh, enhancing heat transfer to the MOF and accelerating desorption kinetics. MIL‐101 (Cr) MOF in bulk form (BMOF) is bonded to the lightweight Ni─Ni3S2 mesh using adhesive, forming a dual‐layer Ni─Ni₃S₂ mesh/BMOF assembly. This hybrid retains a high water uptake of ≈0.63 g g⁻¹ at 60% relative humidity (RH) with superior sorption kinetics. Photothermally driven heat transfer from Ni─Ni₃S₂ to BMOF achieves complete water desorption within 40 min under 1 kW m−2. Compared to other configurations like foil, granules, and foam, the mesh‐based hybrid has the highest single‐cycle adsorption–desorption kinetic of 3.18 × 10⁻3 g g⁻¹ min⁻¹. Additionally, the hybrid demonstrates exceptional hydrothermal stability over 50 cycles and maintains morphological stability with airflow, ensuring consistent performance. Heat transfer simulations confirm the thermal distribution across the Ni─Ni₃S₂ mesh/BMOF, corroborating the rapid and uniform desorption. This approach paves the way for efficient AWH in high‐RH, water‐scarce regions by enhancing desorption kinetics through solar energy.

Funder

National Natural Science Foundation of China

City University of Hong Kong

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3