Affiliation:
1. School of Chemistry and Biochemistry and School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
2. School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg MS 39406 USA
3. Department of Electrical and Computer Engineering University of California San Diego La Jolla CA 92161 USA
Abstract
AbstractPhotodetectors operating across the near‐ to short‐wave infrared (NIR–SWIR, λ = 0.9–1.8 µm) underpin modern science, technology, and society. Organic photodiodes (OPDs) based on bulk‐heterojunction (BHJ) active layers overcome critical manufacturing and operating drawbacks inherent to crystalline inorganic semiconductors, offering the potential for low‐cost, uncooled, mechanically compliant, and ubiquitous infrared technologies. A constraining feature of these narrow bandgap materials systems is the high noise current under an applied bias, resulting in specific detectivities (D*, the figure of merit for detector sensitivity) that are too low for practical utilization. Here, this study demonstrates that incorporating wide‐bandgap insulating polymers within the BHJ suppresses noise by diluting the transport and trapping sites as determined using capacitance‐frequency analysis. The resulting D* of NIR–SWIR OPDs operating from 600–1400 nm under an applied bias of −2 V is improved by two orders of magnitude, from 108 to 1010 Jones (cm Hz1/2 W−1), when incorporating polysulfone within the blends. This broadly applicable strategy can reduce noise in IR‐OPDs enabling their practical operation and the realization of emerging technologies.
Funder
National Science Foundation
Air Force Office of Scientific Research
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献