High‐Entropy Engineering for Broadband Infrared Radiation

Author:

Wang Wei‐Ming1,Liu Bao‐Hua1,He Cheng‐Yu1,Zhao Peng1,Zhao Shi‐Jie1,Wang Zeng‐Qiang1,Lu Zhong‐Wei1,Guo Hui‐Xia2,Ren Guo‐Yu3,Liu Gang1,Gao Xiang‐Hu1ORCID

Affiliation:

1. Laboratory of Clean Energy Chemistry and Materials State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China

2. Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou 730070 China

3. School of Chemistry and Chemical Engineering Yulin University Shaanxi 719000 China

Abstract

AbstractDeveloping high‐performance infrared (IR) radiation materials with desired broadband emissivity, excellent thermal stability, and scalable fabrication processes is highly desirable for energy‐saving applications and heat dissipation. However, it remains a grand challenge to concurrently meet these requirements in existing IR radiation materials. Herein, a high‐entropy (HE) approach is employed to advance the IR radiation performance of spinel oxide. This strategy efficiently narrows the bandgap due to the enhanced electron transitions and the introduction of oxygen vacancies (Ov), variable‐valence behavior, and orbital hybridization. In addition, the lattice distortion effect lowers the symmetry of lattice vibration. Therefore, the resulting HE spinel oxide exhibits near‐blackbody radiation performance, with its emissivity approximately three times higher than that of the binary spinel oxide. Moreover, the entropy‐dominating phase stabilization effect contributes to impressive thermal stability (stable at 1300 °C for 100 h). This makes it suitable for high‐temperature thermal radiation applications, such as energy conservation in industrial high‐temperature furnaces. More importantly, the HE spinel oxide can be readily spray‐coated on various substrates. And the coating on stainless steel reaches an outstanding emissivity of 0.943 in the 0.78−16 µm wavelength range. All these merits render the HE approach competitive for the development of high‐emissivity and thermally stable thermal radiation materials.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3