Exploration and Application of Self‐Healing Strategies in Lithium Batteries

Author:

Ma Weiting1,Wan Shuang1,Cui Xiurui1,Hou Guolin2,Xiao Ying1,Rong Junfeng2,Chen Shimou1ORCID

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology of Materials Beijing University of Chemical Technology Beijing 100029 P. R. China

2. Research Center of Renewable Energy Sinopec Research Institute of Petroleum Processing College Road 18, Haidian district Beijing 100083 P. R. China

Abstract

AbstractLithium batteries (LBs) are developed tremendously owing to their excellent energy density as well as cyclic persistence, exhibiting promising applications from portable devices to e‐transportation and grid fields. However, with the ever‐increasing demand for intelligent wearable electronics, more requests are focused on high safety, good durability, and satisfied reliability of LBs. The self‐healing route, which can simulate the ability of organic organisms to repair damage and recover initial function through its intrinsic vitality, is believed to be an efficient strategy to alleviate the unavoidable physical or chemical fatigue and damage issues of LBs, beneficial for the realization of the above mentioned high requests. In this review, the applicability and development of self‐healing materials are summarized in electrodes, electrolytes, and interfacial layers in recent years, focusing on exploring the feasibility of different self‐healing strategies in LBs, discussing the advantages and disadvantages of existing strategies in different parts of batteries, and indicating the possible research directions for beginners who are interested in this field. Finally, the critical challenges and the future research directions as well as opportunities are prospected.

Funder

Science Fund for Distinguished Young Scholars of Hebei Province

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3