Boosting Piezoelectricity by 3D Printing PVDF‐MoS2 Composite as a Conformal and High‐Sensitivity Piezoelectric Sensor

Author:

Islam Md. Nurul1ORCID,Rupom Rifat Hasan2ORCID,Adhikari Pashupati R.1ORCID,Demchuk Zoriana3ORCID,Popov Ivan3,Sokolov Alexei P.3ORCID,Wu H. Felix4,Advincula Rigoberto C.56,Dahotre Narendra27ORCID,Jiang Yijie1ORCID,Choi Wonbong12ORCID

Affiliation:

1. Department of Mechanical Engineering University of North Texas Denton TX 76207 USA

2. Department of Materials Science and Engineering University of North Texas Denton TX 76207 USA

3. Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37830 USA

4. Vehicle Technologies Office U.S. Department of Energy 1000 Independence Avenue Southwest Washington DC 20585 USA

5. Center for Nanophase Materials and Sciences Oak Ridge National Laboratory Oak Ridge TN 37830 USA

6. Department of Chemical and Biomolecular Engineering University of Tennessee Knoxville TN 37996 USA

7. Center for Agile & Adaptive Additive Manufacturing University of North Texas Denton TX 76207 USA

Abstract

AbstractAdditively manufactured flexible and high‐performance piezoelectric devices are highly desirable for sensing and energy harvesting of 3D conformal structures. Herein, the study reports a significantly enhanced piezoelectricity in polyvinylidene fluoride (PVDF) achieved through the in situ dipole alignment of PVDF within PVDF‐2D molybdenum disulfide (2D MoS2) composite by 3D printing. The shear stress‐induced dipole poling of PVDF and 2D MoS2 alignment are harnessed during 3D printing to boost piezoelectricity without requiring a post‐poling process. The results show a remarkable, more than the eight‐fold increment in the piezoelectric coefficient (d33) for 3D printed PVDF‐8wt.% MoS2 composite over cast neat PVDF. The underlying mechanism of piezoelectric property enhancement is attributed to the increased volume fraction of β phase in PVDF, filler fraction, heterogeneous strain distribution around PVDF‐MoS2 interfaces, and strain transfer to the nanofillers as confirmed by microstructural analysis and finite element simulation. These results provide a promising route to design and fabricate high‐performance 3D piezoelectric devices via 3D printing for next‐generation sensors and mechanical–electronic conformal devices.

Funder

U.S. Department of Energy

University of North Texas

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3