Decoupling Nucleation and Growth in Fast Crystallization of Phase Change Materials

Author:

Müller Maximilian J.1,Morell Carmen1,Kerres Peter2,Raghuwanshi Mohit13,Pfeiffer Ramon1,Meyer Sebastian1,Stenz Christian1,Wang Jiangjing14,Chigrin Dmitry N.15,Lucas Pierre6,Wuttig Matthias127ORCID

Affiliation:

1. Institute of Physics Physics of Novel Materials RWTH Aachen University 52056 Aachen Germany

2. PGI 10 (Green IT) Forschungszentrum Jülich GmbH 52428 Jülich Germany

3. Fraunhofer Institute for Applied Solid State Physics IAF 79108 Freiburg Germany

4. Center for Alloy Innovation and Design (CAID) State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China

5. DWI‐Leibniz‐Institut für Interaktive Materialien Forckenbeckstrasse 50 52074 Aachen Germany

6. Department of Materials Science and Engineering University of Arizona Tucson AZ 85721 USA

7. Jülich‐Aachen Research Alliance (JARA FIT and JARA HPC) RWTH Aachen University 52056 Aachen Germany

Abstract

AbstractDisentangling nucleation and growth in materials that crystallize on the nanosecond time scale is experimentally quite challenging since the relevant processes also take place on very small, i.e., sub‐micrometer length scales. Phase change materials are bad glass formers, which often crystallize rapidly. Here systematic changes in crystallization kinetics are shown in pseudo‐binary compounds of GeTe and Sb2Te3 and related solids subjected to short laser pulses. Upon systematic changes in stoichiometry, the speed of crystallization changes by three orders of magnitude concomitantly with pronounced changes in stochasticity. Resolving individual grains with electron backscatter diffraction (EBSD) permits to disentangle of the process of nucleation and growth. From these experiments, supported by multiphysics simulations of crystallization, it can be concluded that high crystallization speeds with small stochasticity characterize phase change materials with fast nucleation, while compounds that nucleate slowly crystallize much more stochastically.

Funder

Deutsche Forschungsgemeinschaft

National Science Foundation

Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3