Merging Nanowires and Formation Dynamics of Bottom‐Up Grown InSb Nanoflakes

Author:

Rossi Marco1ORCID,Badawy Ghada1ORCID,Zhang Zhi‐Yuan23,Yang Guang2,Li Guo‐An23,Shi Jia‐Yu2,Op het Veld Roy L. M.1,Gazibegovic Sasa1ORCID,Li Lu234,Shen Jie24ORCID,Verheijen Marcel A.5ORCID,Bakkers Erik P. A. M.1

Affiliation:

1. Applied Physics and Science Education Department Eindhoven University of Technology 5600 MB Eindhoven The Netherlands

2. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

3. School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China

4. Songshan Lake Materials Laboratory Dongguan 523808 China

5. Eurofins Materials Science Netherlands B.V.  High Tech Campus 11 5656 AE Eindhoven The Netherlands

Abstract

AbstractIndium Antimonide (InSb) is a semiconductor material with unique properties, that are suitable for studying new quantum phenomena in hybrid semiconductor‐superconductor devices. The realization of such devices with defect‐free InSb thin films is challenging, since InSb has a large lattice mismatch with most common insulating substrates. Here, the controlled synthesis of free‐standing 2D InSb nanostructures, termed as “nanoflakes”, on a highly mismatched substrate is presented. The nanoflakes originate from the merging of pairs of InSb nanowires grown in V‐groove incisions, each from a slanted and opposing {111}B facet. The relative orientation of the two nanowires within a pair, governs the nanoflake morphologies, exhibiting three distinct ones related to different grain boundary arrangements: no boundary (type‐I), Σ3‐ (type‐II), and Σ9‐boundary (type‐III). Low‐temperature transport measurements indicate that type‐III nanoflakes are of a relatively lower quality compared to type‐I and type‐II, based on field‐effect mobility. Moreover, type‐III nanoflakes exhibit a conductance dip attributed to an energy barrier pertaining to the Σ9‐boundary. Type‐I and type‐II nanoflakes exhibit promising transport properties, suitable for quantum devices. This platform hosting nanoflakes next to nanowires and nanowire networks can be used to selectively deposit the superconductor by inter‐shadowing, yielding InSb‐superconductor hybrid devices with minimal post‐fabrication steps.

Funder

National Natural Science Foundation of China

Beijing Nova Program

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3