The Effect of Self‐Assembled Bridging Layer on the Performance of Pure FAPbI3‐Based Perovskite Solar Cells

Author:

Zhang Yang1,Kong Tengfei1,Liu Yinjiang1,Liu Xufu1,Liu Wenli1,Saliba Michael23,Bi Dongqin1ORCID

Affiliation:

1. State key laboratory of optoelectronic materials and technology School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China

2. Institute for Photovoltaics University of Stuttgart Pfaffenwaldring 47 DE‐70569 Stuttgart Germany

3. Helmholtz Young Investigator Group FRONTRUNNER IEK‐5 Photovoltaik Forschungszentrum Jülich GmbH 52428 Jülich Germany

Abstract

AbstractPure FAPbI3‐based, with FA being formamidinium, perovskite solar cells (PSCs) have garnered worldwide recognition for their exceptional efficiency. However, the phase stability of FAPbI3 is still a big obstacle in this area, because the ordinary strategy using MA+, Br, Cs+ to stabilize α‐FAPbI3 phase can cause the bandgap change and ion migration. Herein, a new strategy is introduced to improve the α‐FAPbI3 phase stability by using a self‐assembled bridging layer at the buried interface of FAPbI3 perovskite in the n–i–p solar cell structure. A series of multidentate bisphosphonic acid molecules are screened and demonstrate that etidronic acid (EA) with the smallest steric hindrance behaves the best. The four P‐OH groups can first form multidentate anchors on SnO2 while the remaining unanchored ─OH and P═O groups can form strong interaction between I and Pb2+. Thus, a strong and stable bridging layer is formed, which greatly increases the energy barrier of phase transition of FAPbI3. As a result, the pure FAPbI3‐based (MA+, Br+, Cs+‐free system) n–i–p device reached an impressive power conversion efficiency of 24.2% with good stability. Furthermore, the strong interaction between EA and Pb2+ can greatly reduce lead leakage in harsh conditions.

Funder

National Natural Science Foundation of China

Key Technologies Research and Development Program

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3